Serotonin 1B Receptor Imaging in Alcohol Dependence

Jian Hu, Shannan Henry, Jean-Dominique Gallezot, Jim Ropchan, John F. Neumaier, Marc N. Potenza, Rajita Sinha, John H. Krystal, Yiyun Huang, Yu-Shin Ding, Richard E. Carson, and Alexander Neumeister

Background: Although animal models suggest that alcohol dependence (AD) is associated with elevations in the number of serotonin 1B receptors (5-HT1B), 5-HT1B levels have not been investigated in people with AD. The selective 5-HT1B antagonist radioligand, [11C]P943, permits in vivo assessment of central 5-HT1B binding potential (BPND) with positron emission tomography. Because of its central role in AD, we were particularly interested in ventral striatal 5-HT1B binding values.

Methods: Twelve medication-free, recently abstinent (at least 4 weeks) patients with AD (mean age 35.2 ± 10.2 years, 5 women) and 12 healthy control subjects (HC) (mean age 30.6 ± 9.2 years, 5 women) completed [11C]P943 positron emission tomography on a high-resolution research tomograph. Individual magnetic resonance imaging scans were collected to exclude individuals with anatomical abnormalities and for coregistration. Imaging data were analyzed with a multilinear reference tissue model.

Results: Ventral striatal 5-HT1B BPND values (2.01 ± .57% and 1.55 ± .09%, respectively; 29% between-group difference, p = .006) were increased in AD compared with HC subjects. No influence of demographic or clinical variables or amount of injected radiotracer was observed.

Conclusions: This study provides the first evidence that AD in humans is, like in rodent models, associated with increased levels of ventral striatal 5-HT1B receptors.

Key Words: Alcohol dependence, brain imaging, human subjects, positron emission tomography, serotonin 1B receptor

Disturbances in the regulation of brain serotonin (5-HT) systems have been implicated in diminished inhibitory control of behavior, including pathological alcohol use (1–3). However, the specific mechanisms through which 5-HT systems are dysregulated in alcohol dependence (AD) remain unclear. For example, recent studies have yielded conflicting results regarding the regulation of 5-HT transporter (4–6) and 5-HT1A receptor function (4) in AD. Growing evidence suggests that serotonin 1B receptors (5-HT1B) modify the reinforcing, intoxicating, and discriminative stimulus effects of alcohol and regulate its voluntary intake (7). The ventral striatum (VST) including globus pallidus and the nucleus accumbens area might be particularly important regions for the modulatory role of 5-HT1B receptors on alcohol-related behaviors (8). In rodents, increased expression of 5-HT1B in the VST modulates drinking behavior (i.e., increases ethanol consumption and shifts the animal’s preference for a stronger concentration of ethanol) (7). In humans, polymorphisms in the 5-HT1B gene have been linked to antisocial AD (9), although not unequivocally (10).

The purpose of the current study was to determine whether human AD would be associated, as predicted by animal models, with increased 5-HT1B levels in the globus pallidus and the nucleus accumbens area. The development of the selective 5-HT1B radioligand, [11C]P943, permitted in vivo assessment of central 5-HT1B binding during positron emission tomography (PET) imaging.

Methods and Materials

Subjects

Twelve alcohol-dependent subjects (5 women, mean age 35.2 ± 10.2 years, range 22–48) meeting DSM-IV criteria for current AD and 12 healthy control subjects (5 women, mean age 30.6 ± 9.2 years, range 19–44) were recruited through public advertisement (Table 1). Individuals reporting abuse or dependence of any other substance other than alcohol or nicotine were excluded. The protocol was approved by the Yale University School of Medicine Human Investigation Committee, the Human Subjects Subcommittee of the Veterans Affairs Connecticut Healthcare System, the Magnetic Resonance Research Center, and the Yale New Haven Hospital Radiation Safety Committee. Written informed consent was obtained from all participants after full explanation of study procedures. All participants were evaluated by physical examination, electrocardiogram, standard laboratory tests, urine analysis, and toxicology. Subjects with significant medical or neurological conditions and with history of head injury with loss of consciousness were excluded from the study. The AD subjects were admitted to the Clinical Neuroscience Research Unit at Connecticut Mental Health Center for detoxification and to ensure their medication-free status for at least 4 weeks before imaging. Urine toxicology and Breathalyzer were collected repeatedly during the inpatient admission to the Clinical Neuroscience Research Unit preceding the imaging studies and on the days of the magnetic resonance (MR) imaging and PET scans.

Scanning and Imaging Procedures

Subject preparation for the PET scan consisted of indwelling venous catheter placement. A transmission scan with a 137Cs point source was obtained before the emission scan. The PET scans were acquired for 120 min at rest with a single intravenous injection of high specific activity [11C]P943, a selective 5-HT1B receptor antagonist radiotracer (11), on a high-resolution research tomograph PET scanner (207 slices, resolution <3 mm

From the Molecular Imaging Program (JH, AN), Clinical Neurosciences Division, VA National Center for PTSD, VA Connecticut Healthcare System, West Haven; Department of Psychiatry (JH, SH, MNP, RS, JHK, AN); Child Study Center (MNP); Positron Emission Tomography Center (J-DG, JR, YH, Y-SD, REC), Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut; and the Department of Psychiatry (JFN), University of Washington, Seattle, Washington.

Address correspondence to Alexander Neumeister, M.D., One Gustave L. Levy Place, Box 1230, New York, NY 10029-6574; E-mail: alexander.neumeister@mssm.edu.

Received Sep 16, 2009; revised Dec 18, 2009; accepted Dec 22, 2009.

© 2010 Society of Biological Psychiatry
full-width-at-half-maximal in three-dimensional acquisition mode). Dynamic scan data were reconstructed with corrections (attenuation, normalization, scatter, randoms, and dead time). Motion correction of PET data were performed by coregistering each reconstructed frame to an early summed image (0–10 min after injection) with a 6-parameter mutual information algorithm and FMRIB’s Linear Image Registration Tool (FLIRT, FSL 3.2, Analysis Group, FMRIB, Oxford, United Kingdom).

Magnetic resonance images were obtained for each subject on a Siemens 3-T Trio system (Siemens Medical Solutions, Malvern, Pennsylvania) to exclude individuals with anatomical abnormalities and for coregistration. A second summed image (0–10 min after injection) was created from the motion-corrected PET data and registered to the subject’s MR image, which in turn was registered (12-parameter affine transformation) to an MR template (Montreal Neurological Institute space). The globus pallidus/nucleus accumbens region of interest was taken from the template (Anatomical Automatic Labeling [12] for SPM2 [http://www.fil.ion.ucl.ac.uk/spm/software/spm2/]) and applied to the PET data to produce time-activity curves for cerebellum. Pixel × pixel analysis was performed with the multilinear reference tissue model (13) to produce images of binding potential (BP_{ND}) (14). The interpretation of BP_{ND} is $f_{ND} \times B_{avail} / K_d$, where f_{ND} is the tracer-free fraction in a region without specific binding, B_{avail} is the unoccupied receptor concentration, and K_d is the dissociation equilibrium constant of the tracer. Cerebellum was used as the reference region, because it is practically devoid of 5-HT1BRs for the radioligand [11C]P943-binding, and ligands that are sensitive to endogenous 5-HT might be developed in the future. The interpretation of BP_{ND} is $f_{ND} \times B_{avail} / K_d$, where f_{ND} is the tracer-free fraction in a region without specific binding, B_{avail} is the unoccupied receptor concentration, and K_d is the dissociation equilibrium constant of the tracer. Cerebellum was used as the reference region, because it is practically devoid of 5-HT1BRs in the nucleus accumbens area (2.01 ± 57 and 1.55 ± 0.9, respectively; 29% between-group difference; $U = 119.0, z = 2.71, p = .006$) (Figure 1), with effects found bilaterally (left hemisphere: 35% between-group difference, and right hemisphere: 24% between-group difference). None of the clinical measures or injection parameters correlated with 5-HT1BR BP_{ND} in either group.

Table 1. Demographic Data and Clinical Characteristics

<table>
<thead>
<tr>
<th>Group</th>
<th>Healthy Control ($n = 12$)</th>
<th>Alcohol Dependence ($n = 12$)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yrs)</td>
<td>30.6 ± 9.2</td>
<td>35.2 ± 10.2</td>
<td>.25</td>
</tr>
<tr>
<td>range: 18–49 yrs</td>
<td>range: 22–51 yrs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td>5 F; 7 M</td>
<td>5 F; 7 M</td>
<td>1</td>
</tr>
<tr>
<td>Race</td>
<td>1 Mix/1 AS/10 C</td>
<td>1 Mix/4 AA/7 C</td>
<td></td>
</tr>
<tr>
<td>BMI</td>
<td>25.2 ± 4.0</td>
<td>25.5 ± 5.0</td>
<td>.87</td>
</tr>
<tr>
<td>Smoking Status</td>
<td>10 N; 2 S</td>
<td>3 N; 9 S</td>
<td>.01*</td>
</tr>
<tr>
<td>Age at First Drinking (yrs)</td>
<td>—</td>
<td>13.3 ± 4.3</td>
<td></td>
</tr>
<tr>
<td>Total yrs of Drinking</td>
<td>—</td>
<td>15.3 ± 9.9</td>
<td></td>
</tr>
<tr>
<td>Injected Dose (MBq)</td>
<td>668.4 ± 30.2</td>
<td>695.3 ± 51.4</td>
<td>.17</td>
</tr>
<tr>
<td>Specific Activity (MBq/nmol)</td>
<td>9.8 ± 3.4</td>
<td>8.7 ± 2.6</td>
<td>.39</td>
</tr>
<tr>
<td>Injected Mass (μg)</td>
<td>1.6 ± .8</td>
<td>1.8 ± .6</td>
<td>.32</td>
</tr>
</tbody>
</table>

Data represent mean ± SD. The p values by independent unpaired t tests, except gender and smoking status by Fisher’s x^2 tests.*

F, female; M, male; Mix, mixed; AS, Asian-American; C, Caucasian; AA, African-American; BMI, body mass index; N, nonsmoker; S, smoker.

Discussion

The principal observation of this study was that ventral striatal 5-HT1BR BP_{ND} was increased in AD subjects who were scanned during early abstinence relative to a group of HC subjects. This increase was not directly related to features of the history of alcohol consumption among patients in this study. Our data do not clarify whether these differences are a preexisting condition in AD patients or, alternatively, a consequence of the disorder.

The mechanism underlying the increase in ligand-binding to 5-HT1BRs is not evident from the current data. The increases in 5-HT1BR BP_{ND} might reflect an overexpression of 5-HT1BRs or a higher affinity of these receptors. Alternatively, it is possible that low synaptic 5-HT concentrations could lead to more unoccupied 5-HT1BRs for the radioligand $[^{11}C]P943$-binding, and ligands that are sensitive to endogenous 5-HT might be developed in the future. In either case, alterations in 5-HT1BR function might contribute to AD by influencing 5-HT input to the VST via their role as 5-HT terminal autoreceptors, dopaminergic input to the striatum via the role of these receptors as heteroreceptors on γ-aminobutyric acid terminals within the ventral tegmental area, and glutamatergic activity within the VST via heteroreceptors on corticofugal projections (17). We acknowledge that PET imaging cannot discriminate between pre- and postsynaptic receptors and auto-and heteroreceptors and only provides a measure of the total number of receptors in a region of interest. Emerging evidence, however, suggests that 5-HT1BRs in the nucleus accumbens shell neurons specifically are involved in the drug-rewarding processes of ethanol (7) and other drugs of abuse (18).

A limitation of the present study is the difference in nicotine use between groups. Given the high prevalence of nicotine use among AD patients and to study a representative cohort of AD, we decided to accept smokers into the study. We acknowledge, however, that our sample size is currently too small to specifically address the issue of comorbidity between smoking and AD and therefore do not know whether it affects the outcome of the study.

www.sobp.org/journal
Altogether, the presented preliminary data suggest an important role for ventral striatal 5-HT1B Rs in AD. Our data do not clarify, however, whether an overexpression of 5-HT1B Rs is a biomarker for AD specifically or is associated with drug reward responses as well as increased vulnerability to substance use disorders in general (19). Future research will be needed to determine whether these alterations are pre-existing or a consequence of AD and whether 5-HT1B Rs might be productively targeted to treat AD.

Figure 1. In the upper row, the box plot showing significant differences in ventral striatum, including the globus pallidus and nucleus accumbens area \([^{11}C]P943\) binding potential (BPND) between patients with alcohol dependence (AD) and healthy control subjects (HC), is presented. In the lower row, the average \([^{11}C]P943\) BPND coregistered positron emission tomography images illustrate increased ventral striatum \([^{11}C]P943\) BPND in AD (right) relative to HC (left).

This work was supported by the Interdisciplinary Research Consortium on Stress, Self-Control and Addiction: UL1-DE19586; the National Institutes of Health (NIH) Road Map for Medical Research/Common Fund; the Human Subjects P30 Core: PL1-DA24859, project RLI-AA17540; the National Institute on Alcohol Abuse and Alcoholism Grants KO5 AA14906-04, 2P50-AA012870-07, R21 AA018329; the VA Alcohol Research Center, VA National Center for Posttraumatic Stress Disorder at the West Haven, VA Connecticut Clinical Neurosciences Division; and VA VISN1 Mental Illness Research, Education and Clinical Centers. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute on Alcolol Abuse and Alcoholism or the NIH or the Department of Veterans Affairs.

The authors acknowledge the excellent work of the staff of the Yale PET Center and the nursing support from Sue Kasserman, R.N., for help in recruitment and patient care, and Brenda Breault, R.N., B.S.N., for her contributions with patient care during the PET scans. In addition, we acknowledge the Yale-Pfizer Bioimaging Alliance for support in the development of \([^{11}C]P943\).

Dr. Krystal reports receiving consulting fees from AstraZeneca, Bristol-Meyers Squibb, Cypress Bioscience, Eli Lilly and Company, Forest Laboratories, Glaxo-SmithKline, SK Holdings, Janssen Pharmaceuticals, LoboLife Research Corporation, Merz Pharmaceuticals, Organon Pharmaceuticals, Pfizer Pharmaceuticals, Takaela Industries, Tetagenex Pharmaceuticals (compensation in exercisable warrant options until March 21, 2012; value < $10K), and Transcept Pharmaceuticals and is a cosponsor for two pending patents, “Glutamate agents in the treatment of mental disorders” and “Intranasal Administration of Ketamine to Treat Depression.” Dr. Neumaier reports having received lecture fees from Eli Lilly and Wyeth, and Dr. Neumeister reports grant support from Pfizer, Eli Lilly, UCB Pharma, and Ortho-McNeil Janssen Scien-
tific Affairs. Dr. Potenza consults for and is an adviser to Boehringer Ingelheim; has consulted for and has financial interests in Somaxon; has received research support from the NIH, Veteran’s Administration, Monegan Sun Casino, the National Center for Responsible Gaming and its affiliated Institute for Research on Gambling Disorders, Forest Laboratories, Ortho-McNeil, Oy-Control/Biotie, and GlaxoSmithKline pharmaceuticals; has participated in surveys, mailings, or telephone consultations related to drug addiction, impulse control disorders or other health topics; has consulted care in the Connecticut Department of Mental Health and Addiction Services Problem Gambling Services Program; has performed grant reviews for the NIH and other agencies; has given academic lectures in grand rounds, Continuing Medical Education events, and other clinical or scientific venues; and has generated books or book chapters for publishers of mental health texts. All other authors reported no biomedical financial interests or potential conflicts of interest. The contents of the manuscript are solely the responsibility of the authors and do not necessarily represent the official views of any of the funding agencies.